Matrix Polynomials in the Theory of Linear Control Systems

Ion Zaballa

Departamento de Matemática Aplicada y EIO

$$
\begin{aligned}
& \text { Universidad Euskal Herriko } \\
& \text { del País Vasco Unibertsitatea }
\end{aligned}
$$

Matrix Polynomials in Linear Control

Matrix Polynomials in Linear Control

Coefficient
 Matrices of highorder systems

$$
\left\{\begin{array}{l}
T\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)=U\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t) \\
y(t)=V\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)+W\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t)
\end{array}\right.
$$

Matrix Polynomials in Linear Control

Coefficient

Matrices of highorder systems

Matrix Polynomials in Linear Control

Coefficient

Matrices of highorder systems

Matrix Polynomials Representing systems
$\dot{x}(t)=A x(t)+B u(t)$

Behaviours
(Poldermann
\& Willems)

$$
P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) y(t)=Q\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t)
$$

Polynomial System Matrices

$$
\left\{\begin{array}{l}
T\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)=U\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t) \\
y(t)=V\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)+W\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t)
\end{array}\right.
$$

Polynomial System Matrices

state vector

$$
\left\{\begin{array}{l}
T\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right), x(t)=U\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t) \\
y(t)=V\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)+W\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t)
\end{array}\right.
$$

Polynomial System Matrices

state vector

input or control vector

Polynomial System Matrices

state vector

 input or control vectoroutput or measurement vector

Polynomial System Matrices

state vector

 input or control vectoroutput or measurement vector
If $R(\lambda)=R_{p} \lambda^{p}+R_{p-1} \lambda^{p-1}+\cdots+R_{1} \lambda+R_{0}$ is a matrix polynomial:

$$
R\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)=R_{p} \frac{\mathrm{~d}^{p} x(t)}{\mathrm{d} t^{p}}+R_{p-1} \frac{\mathrm{~d}^{p-1} x(t)}{\mathrm{d} t^{p-1}}+\cdots+R_{1} \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+R_{0} x(t)
$$

Polynomial System Matrices

state vector

 input or control vector
output or measurement vector
If $R(\lambda)=R_{p} \lambda^{p}+R_{p-1} \lambda^{p-1}+\cdots+R_{1} \lambda+R_{0}$ is a matrix polynomial:

$$
R\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)=R_{p} \frac{\mathrm{~d}^{p} x(t)}{\mathrm{d} t^{p}}+R_{p-1} \frac{\mathrm{~d}^{p-1} x(t)}{\mathrm{d} t^{p-1}}+\cdots+R_{1} \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+R_{0} x(t)
$$

$$
\left[\begin{array}{cc}
T(s) & U(s) \\
-V(s) & W(s)
\end{array}\right]\left[\begin{array}{c}
\bar{x}(s) \\
-\bar{u}(s)
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\bar{y}(s)
\end{array}\right], \quad \operatorname{det} T(s) \neq 0
$$

Polynomial System Matrices

state vector

 input or control vector$$
\left\{\begin{array}{l}
T\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right), x(t)=U\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t) \\
y(t)=V\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) \\
x(t)+W\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u(t)
\end{array}\right.
$$

output or measurement vector
If $R(\lambda)=R_{p} \lambda^{p}+R_{p-1} \lambda^{p-1}+\cdots+R_{1} \lambda+R_{0}$ is a matrix polynomial:

$$
R\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) x(t)=R_{p} \frac{\mathrm{~d}^{p} x(t)}{\mathrm{d} t^{p}}+R_{p-1} \frac{\mathrm{~d}^{p-1} x(t)}{\mathrm{d} t^{p-1}}+\cdots+R_{1} \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+R_{0} x(t)
$$

$$
\left[\begin{array}{cc}
T(s) & U(s) \\
-V(s) & W(s)
\end{array}\right]\left[\begin{array}{c}
\bar{x}(s) \\
-\bar{u}(s)
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\bar{y}(s)
\end{array}\right], \quad \operatorname{det} T(s) \neq 0
$$

Polynomial System Matrix

Transfer Function Matrix

$$
\bar{y}(s)=V(s) \bar{x}(s)+W(s) \bar{u}(s)=
$$

Transfer Function Matrix

$$
\begin{aligned}
T(s) \bar{x}(s) & =U(s) \bar{u}(s) \\
\bar{y}(s) & =V(s) \bar{x}(s)+W(s) \bar{u}(s)=
\end{aligned}
$$

Transfer Function Matrix

$$
\begin{aligned}
T(s) \bar{x}(s) & =U(s) \bar{u}(s) \\
\bar{y}(s) & =V(s) \bar{x}(s)+W(s) \bar{u}(s)=\left(V(s) T(s)^{-1} U(s)+W(s)\right) \bar{u}(s)
\end{aligned}
$$

Transfer Function Matrix

$$
\begin{aligned}
T(s) \bar{x}(s) & =U(s) \bar{u}(s) \\
\bar{y}(s) & =V(s) \bar{x}(s)+W(s) \bar{u}(s)=\left(V(s) T(s)^{-1} U(s)+W(s)\right) \bar{u}(s)
\end{aligned}
$$

Transfer Function Matrix

$$
\begin{aligned}
T(s) \bar{x}(s) & =U(s) \bar{u}(s) \\
\bar{y}(s) & =V(s) \bar{x}(s)+W(s) \bar{u}(s)=\left(V(s) T(s)^{-1} U(s)+W(s)\right) \bar{u}(s)
\end{aligned}
$$

When do two polynomial system matrices yield the same Transfer Function Matrix?

Strict System Equivalence

Strict System Equivalence

Unimodular:
$\operatorname{det}=c \neq 0$

$$
\left[\begin{array}{cc}
M(s) & 0 \\
X(s) & I_{p}
\end{array}\right]\left[\begin{array}{cc}
T_{1}(s) & U_{1}(s) \\
-V_{1}(s) & W_{1}(s)
\end{array}\right]\left[\begin{array}{cc}
N(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc}
T_{2}(s) & U_{2}(s) \\
-V_{2}(s) & W_{2}(s)
\end{array}\right]
$$

Strict System Equivalence

Strict System Equivalence

Strict System Equivalence

$$
\left.\left[\begin{array}{cc}
M(s) & 0 \\
X(s) & I_{p}
\end{array}\right] \begin{array}{c}
n \\
p
\end{array} \begin{array}{cc}
T_{1}(s) & U_{1}(s) \\
-V_{1}(s) & W_{1}(s)
\end{array}\right]\left[\begin{array}{cc}
N(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc}
T_{2}(s) & U_{2}(s) \\
-V_{2}(s) & W_{2}(s)
\end{array}\right]
$$

\Downarrow

$$
V_{1}(s) T_{1}(s)^{-1} U_{1}(s)+W_{1}(s)=V_{2}(s) T_{2}(s)^{-1} U_{2}(s)+W_{2}(s)
$$

Strict System Equivalence

$$
\left[\begin{array}{cc}
M(s) & 0 \\
X(s) & I_{p}
\end{array}\right] \begin{gathered}
n \\
p
\end{gathered}\left[\begin{array}{cc}
T_{1}(s) & U_{1}(s) \\
-V_{1}(s) & W_{1}(s)
\end{array}\right]\left[\begin{array}{cc}
N(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc}
T_{2}(s) & U_{2}(s) \\
-V_{2}(s) & W_{2}(s)
\end{array}\right]
$$

$\Downarrow \quad$? ?
$V_{1}(s) T_{1}(s)^{-1} U_{1}(s)+W_{1}(s)=V_{2}(s) T_{2}(s)^{-1} U_{2}(s)+W_{2}(s)$

Coprime Matrix Polynomials

$$
\left\{\begin{array}{l}
A(s)=\widetilde{A}(s) C(s) \\
B(s)=\widetilde{B}(s) C(s)
\end{array}\right.
$$

Right Common Factor

$A(s), B(s)$ right coprime $\Leftrightarrow C(s)$ unimodular

$$
A(s), B(s) \text { right coprime } \Leftrightarrow\left[\begin{array}{c}
A(s) \\
B(s)
\end{array}\right] \stackrel{e}{\sim}\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]
$$

$A(s), B(s)$ left coprime $\Leftrightarrow\left[\begin{array}{ll}A(s) & B(s)\end{array}\right] \stackrel{e}{\sim}\left[\begin{array}{ll}I_{n} & 0\end{array}\right]$

Coprimeness and Strict System Equivalence

$$
\begin{aligned}
& \text { If } G(s) \in \mathbb{F}(s)^{p \times m},(T(s), U(s), V(s), W(s)) \text { Realization of } G(s) \text { if } \\
& G(s)=W(s)+V(s) T(s)^{-1} U(s) . \text { order }=\operatorname{deg}(\operatorname{det} T(s))
\end{aligned}
$$

$(T(s), U(s), V(s), W(s))$ realization of least order \Leftrightarrow $(T(s), U(s))$ left coprime and $(T(s), V(s))$ right coprime

$$
\text { If } P_{1}(s)=\left[\begin{array}{cc}
T_{1}(s) & U_{1}(s) \\
-V_{1}(s) & W_{1}(s)
\end{array}\right], P_{2}(s)=\left[\begin{array}{cc}
T_{2}(s) & U_{2}(s) \\
-V_{2}(s) & W_{2}(s)
\end{array}\right] \text { polyno- }
$$ mial system matrices of least order

$$
P_{1}(s) \underset{\Uparrow}{\underset{\Downarrow}{\text { s.s.e. }}} P_{2}(s)
$$

$$
V_{1}(s) T_{1}(s)^{-1} U_{1}(s)+W_{1}(s) \stackrel{\downarrow}{=} V_{2}(s) T_{2}(s)^{-1} U_{2}(s)+W_{2}(s)
$$

Systems in State-Space Form

$$
\text { (} \Sigma \text {) } \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-C & 0
\end{array}\right]\right.
$$

Systems in State-Space Form

$$
\text { (} \Sigma \text {) } \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-C & 0
\end{array}\right]\right.
$$

Controllability in $\left[t_{0}, t_{1}\right]: \forall x_{0}, x_{1} \in \mathbb{R}^{n}, \exists u$ defined in $\left[t_{0}, t_{1}\right]$ such that the solution of the I.V.P. $\dot{x}(t)=A x(t)+B u(t), x\left(t_{0}\right)=x_{0}$, satisfies $x\left(t_{1}\right)=x_{1}$.

Systems in State-Space Form

$$
\text { (} \Sigma \text {) } \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-C & 0
\end{array}\right]\right.
$$

Controllability in $\left[t_{0}, t_{1}\right]: \forall x_{0}, x_{1} \in \mathbb{R}^{n}, \exists u$ defined in $\left[t_{0}, t_{1}\right]$ such that the solution of the I.V.P. $\dot{x}(t)=A x(t)+B u(t), x\left(t_{0}\right)=x_{0}$, satisfies $x\left(t_{1}\right)=x_{1}$.

(Σ) controllable $\leftrightarrow(A, B)$ controllable

Controllability, Observability and Coprimeness

$$
\text { (} \Sigma \text {) } \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-C & 0
\end{array}\right]\right.
$$

(A, B) controllable is equivalent to:

- $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$, or
- $s I_{n}-A$ and B are left coprime $\left(\left[\begin{array}{ll}s I_{n}-A & B\end{array}\right] \stackrel{e}{\sim}\left[\begin{array}{ll}I_{n} & 0\end{array}\right]\right)$

Controllability, Observability and Coprimeness

$$
\text { (} \Sigma \text {) } \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-C & 0
\end{array}\right]\right.
$$

(A, B) controllable is equivalent to:

- $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$, or
- $s I_{n}-A$ and B are left coprime $\left(\left[\begin{array}{ll}s I_{n}-A & B\end{array}\right] \stackrel{e}{\sim}\left[\begin{array}{ll}I_{n} & 0\end{array}\right]\right)$

Observability in $\left[t_{0}, t_{1}\right]$: The value of y in $\left[t_{0}, t_{1}\right]$ determines the state at $t_{0}, x\left(t_{0}\right)$, and so the vector function $x(t)$ in $\left[t_{0}, t_{1}\right]$.
(Σ) observable $\leftrightarrow(A, C)$ observable $\equiv\left(A^{T}, C^{T}\right)$ controllable.

Controllability, Observability and Coprimeness

$$
\text { (} \Sigma \text {) } \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-C & 0
\end{array}\right]\right.
$$

(A, B) controllable is equivalent to:

- $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$, or
- $s I_{n}-A$ and B are left coprime $\left(\left[\begin{array}{ll}s I_{n}-A & B\end{array}\right] \stackrel{e}{\sim}\left[\begin{array}{ll}I_{n} & 0\end{array}\right]\right)$

Observability in $\left[t_{0}, t_{1}\right]$: The value of y in $\left[t_{0}, t_{1}\right]$ determines the state at $t_{0}, x\left(t_{0}\right)$, and so the vector function $x(t)$ in $\left[t_{0}, t_{1}\right]$.
(Σ) observable $\leftrightarrow(A, C)$ observable $\equiv\left(A^{T}, C^{T}\right)$ controllable. $P(s)=\left[\begin{array}{cc}s I_{n}-A & B \\ -C & 0\end{array}\right]$ is of least order if and only if (A, B) controllable and (A, C) observable.

Transfer Function Matrix

From now on:

$$
(\Sigma) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=I_{n} x(t)
\end{array} \quad \rightarrow \quad P(s)=\left[\begin{array}{ll}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\right.
$$

Transfer Function Matrix: $\begin{aligned} G(s)=\left(s I_{n}-A\right)^{-1} B & \longrightarrow 0 \\ s & \rightarrow \infty\end{aligned}$

Transfer Function Matrix

From now on:

$$
(\Sigma) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=I_{n} x(t)
\end{array} \rightarrow P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\right.
$$

Transfer Function Matrix: $\begin{aligned} G(s)=\left(s I_{n}-A\right)^{-1} B & \\ s & \longrightarrow \infty\end{aligned}$
$\operatorname{lcm}\{$ denominators of $G(s)\}$

$$
G(s)=\tilde{N}(s)\left(d(s) I_{n}\right)^{-1}
$$

Transfer Function Matrix

From now on:

$$
(\Sigma) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=I_{n} x(t)
\end{array} \rightarrow P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\right.
$$

Transfer Function Matrix: $G(s)=\left(s I_{n}-A\right)^{-1} B$

$$
s \rightarrow \infty
$$

$\operatorname{lcm}\{$ denominators of $G(s)\}$
Remove right common factors from $\widetilde{N}(s)$ and $d(s) I_{n}$

$$
G(s)=\tilde{N}(s)\left(d(s) I_{n}\right)^{-1}=N(s) D(s)^{-1}
$$

Transfer Function Matrix

From now on:

$$
(\Sigma) \quad\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=I_{n} x(t)
\end{array} \rightarrow P(s)=\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\right.
$$

Transfer Function Matrix: $G(s)=\left(s I_{n}-A\right)^{-1} B \quad \longrightarrow 0$

$$
s \rightarrow \infty
$$

$\operatorname{lcm}\{$ denominators of $G(s)\}$

$$
G(s)=\widetilde{N}(s)\left(d(s) I_{n}\right)^{-1}=N(s) D(s)^{-1}
$$

If (A, B) controllable

$$
\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right] \stackrel{s s e}{\sim}\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m} \\
\hline 0 & -N(s) & 0
\end{array}\right] \quad(n \geq m)
$$

Polynomial Matrix Representations

$$
\begin{gather*}
{\left[\begin{array}{cc}
U(s) & 0 \\
X(s) & I_{n}
\end{array}\right]\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m} \\
\hline 0 & -N(s) & 0
\end{array}\right]} \\
\forall \tag{*}\\
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{ccc|}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right] \quad(\star)
\end{gather*}
$$

Polynomial Matrix Representations

$$
\begin{align*}
& {\left[\begin{array}{cc}
U(s) & 0 \\
X(s) & I_{n}
\end{array}\right]\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m} \\
\hline 0 & -N(s) & 0
\end{array}\right]} \\
& \longrightarrow \Uparrow \Downarrow \\
& U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right]\right. \\
& X(s)=\left[V_{1}(s) \quad Y(s)\right] U(s), N(s)=-Y(s) D(s)+ \\
& V_{2}(s) \text {, where } V(s)=\left[\begin{array}{ll}
V_{1}(s) & V_{2}(s)
\end{array}\right], V_{2} n \times m
\end{align*}
$$

Polynomial Matrix Representations

$$
\begin{align*}
& {\left[\begin{array}{cc}
U(s) & 0 \\
X(s) & I_{n}
\end{array}\right]\left[\begin{array}{cc}
s I_{n}-A & B \\
-I_{n} & 0
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc}
I_{n-m} & 0 \\
0 & D(s) \\
0 & I_{m} \\
\hline 0 & -N(s)
\end{array}\right]} \\
& \left.U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right] \begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{ccc}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right]
\end{align*}(\star)
$$

A Polynomial Matrix Representation of a controllable system (A, B) is any non-singular Matrix Polynomial $D(s)$ such that (\star) is satisfied for some unimodular matrices $U(s), V(s)$ and some matrix $Y(s)$.

Some Consequences of the Definition. I

- If $D(s)$ is a PMR of $(A, B), D(s) W(s)$ is also a PMR of (A, B) for any unimodular $W(s)$.

$$
\begin{aligned}
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right] & =\left[\begin{array}{ccc}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right] \\
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{ccc}
V(s) \widetilde{W}(s) & Y(s) \\
0 & I_{m}
\end{array}\right] & =\left[\begin{array}{ccc}
I_{n-m} & 0 & 0 \\
0 & D(s) W(s) & I_{m}
\end{array}\right]
\end{aligned}
$$

$$
\widetilde{W}(s)=\operatorname{Diag}\left(I_{n-m}, W(s)\right) .
$$

Some Consequences of the Definition. I

- If $D(s)$ is a PMR of $(A, B), D(s) W(s)$ is also a PMR of (A, B) for any unimodular $W(s)$.

$$
\begin{aligned}
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right] & =\left[\begin{array}{ccc}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right] \\
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{ccc}
V(s) \widetilde{W}(s) & Y(s) \\
0 & I_{m}
\end{array}\right] & =\left[\begin{array}{ccc}
I_{n-m} & 0 & 0 \\
0 & D(s) W(s) & I_{m}
\end{array}\right]
\end{aligned}
$$

$$
\widetilde{W}(s)=\operatorname{Diag}\left(I_{n-m}, W(s)\right)
$$

If $D_{1}(s), D_{2}(s)$ are PMRs of $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$:

$$
D_{2}(s)=D_{1}(s) W(s) \Leftrightarrow\left(A_{2}, B_{2}\right)=\left(P^{-1} A_{1} P, P^{-1} B_{1}\right) .
$$

$W(s)$ unimodular, P invertible.

Some Consequences of the Definition. II

- If $D(s)=D_{\ell} s^{\ell}+D_{\ell-1} s^{\ell-1}+\cdots+D_{1} s+D_{0}$

$$
\begin{aligned}
& \left(s I_{n}-A\right)^{-1} B=N(s) D(s)^{-1} \Leftrightarrow\left(s I_{n}-A\right)^{-1} B D(s)=N(s) \\
& \quad \Leftrightarrow \quad A^{\ell} B D_{\ell}+A^{\ell-1} B D_{\ell-1}+\cdots+A B D_{1}+B D_{0}=0 \quad(\star \star)
\end{aligned}
$$

(A, B) controllable and $(\star \star) \Leftrightarrow D(s)$ PMR of (A, B)

Some Consequences of the Definition. II

- If $D(s)=D_{\ell} s^{\ell}+D_{\ell-1} s^{\ell-1}+\cdots+D_{1} s+D_{0}$

$$
\begin{aligned}
& \left(s I_{n}-A\right)^{-1} B=N(s) D(s)^{-1} \Leftrightarrow\left(s I_{n}-A\right)^{-1} B D(s)=N(s) \\
& \quad \Leftrightarrow \quad A^{\ell} B D_{\ell}+A^{\ell-1} B D_{\ell-1}+\cdots+A B D_{1}+B D_{0}=0 \quad(\star \star)
\end{aligned}
$$

(A, B) controllable and $(\star \star) \Leftrightarrow D(s)$ PMR of (A, B)

- $s I_{n}-A$ is a linearization of $D(s)$

$$
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right]
$$

Some Consequences of the Definition. II

- If $D(s)=D_{\ell} s^{\ell}+D_{\ell-1} s^{\ell-1}+\cdots+D_{1} s+D_{0}$

$$
\begin{gathered}
\left(s I_{n}-A\right)^{-1} B=N(s) D(s)^{-1} \Leftrightarrow\left(s I_{n}-A\right)^{-1} B D(s)=N(s) \\
\Leftrightarrow \quad A^{\ell} B D_{\ell}+A^{\ell-1} B D_{\ell-1}+\cdots+A B D_{1}+B D_{0}=0 \quad(\star \star)
\end{gathered}
$$

(A, B) controllable and $(\star \star) \Leftrightarrow D(s)$ PMR of (A, B)

- $s I_{n}-A$ is a linearization of $D(s)$

$$
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right]
$$

Given $D(s)$, non-singular, is there, for any linearization $s I_{n}-A$ of $D(s)$, a control matrix B such that (A, B) is controllable and $D(s)$ is a PMR of (A, B) ?

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
n=8, m=5
$$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
n=8, m=5
$$

$A B$

$b_{2} b_{3} b_{4} \quad A b_{2} A b_{4}$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
n=8, m=5
$$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
n=8, m=5
$$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
n=8, m=5
$$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
n=8, m=5
$$

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
\begin{aligned}
& n=8, m=5 \\
& \quad \begin{array}{l}
n \\
b_{2} b_{3}
\end{array} \\
& \ell_{1}=0, \ell_{2}=2, \ell_{3}=1, \ell_{4}=5, \ell_{5}=0 \\
& k_{1}=5, k_{2}=2, k_{3}=1, k_{4}=0, k_{5}=0
\end{aligned}
$$

Controllability Indices

Controllability indices

Assume (A, B) controllable: $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$

$$
\begin{aligned}
& n=8, m=5 \\
& B
\end{aligned}
$$

Controllability Indices
Controllability indices of $(A, B)=$ minimal indices of $s\left[\begin{array}{ll}I_{n} & 0\end{array}\right]-\left[\begin{array}{ll}A & B\end{array}\right]$
Matlab

PMRs and Controllability indices

unordered controllability indeces

$\operatorname{det} D_{h c} \neq 0$
degree of i-th column $\leq \ell_{i}$

PMRs and Controllability indices

 unordered controllability indeces
$\operatorname{det} D_{h c} \neq 0$
degree of i-th column $\leq \ell_{i}$

- Matrix polynomials with this property are called column proper or column reduced

PMRs and Controllability indices

unordered controllability indeces

$\operatorname{det} D_{h c} \neq 0$
degree of i-th column $\leq \ell_{i}$

- Matrix polynomials with this property are called column proper or column reduced

Let $A(s) \in \mathbb{F}[s]^{m \times m}$ be a non-singular matrix polynomial. Then there is $U(s) \in \mathbb{F}[s]^{m \times m}$, unimodular, such that $D(s)=A(s) U(s)$ is a column proper matrix. In general, $D(s)$ is not unique but all have the same column degrees up to reordering.

Column Proper Matrix Polynomials

Given $A(s)$, choose a linearization $s I_{n}-A$

Column Proper Matrix Polynomials

Given $A(s)$, choose a linearization $s I_{n}-A$

$$
\begin{gathered}
D(s)= \\
D_{h c}^{\operatorname{Diag}\left(s_{1}, s^{\ell_{2}}, \ldots, s^{\ell_{m}}\right)+} \\
D_{l c}(s) \text { column proper }
\end{gathered}
$$

Column Proper Matrix Polynomials

Given $A(s)$, choose a linearization $s I_{n}-A$

Column Proper Matrix Polynomials

Given $A(s)$, choose a linearization $s I_{n}-A$
 $D_{l c}(s)$ column proper

$\square\left(A_{c}, B_{c}\right) \quad \stackrel{$| MATLAB |
| :---: |
| example |$}{$| $\widetilde{D}(s)=$ |
| :---: |
| $\operatorname{Diag}\left(s^{\ell_{1}}, s^{\ell_{2}}, \ldots, s^{\ell_{m}}\right)+$ |
| $D_{h c}^{-1} D_{l c}(s) \text { column proper }$ |$}$

Column Proper Matrix Polynomials

Given $A(s)$, choose a linearization $s I_{n}-A$

Column Proper Matrix Polynomials

$A(s)$ is a Polynomial Matrix Representation of (A, B) and $\ell_{1}, \ldots \ell_{m}$ are its (unordered) controllability indices.

Wiener-Hopf Factorization and Indices

$A_{1}(s), A_{2}(s) \in \mathbb{F}[s]^{m \times n}$ Wiener-Hopf equivalent (at ∞ on the left):

Biproper: $\lim _{s \rightarrow \infty} B(s)$ invertible

$$
A_{2}(s)=B(s) A_{1}(s) U(s)
$$

Unimodular: $\lim _{s \rightarrow a} U(s)$ invertible, $\forall a \in \mathbb{C}$

Wiener-Hopf Factorization and Indices

$A_{1}(s), A_{2}(s) \in \mathbb{F}[s]^{m \times n}$ Wiener-Hopf equivalent (at ∞ on the left):

Biproper: $\lim _{s \rightarrow \infty} B(s)$ invertible

$$
A_{2}(s)=B(s) A_{1}(s) U(s)
$$

$$
\begin{aligned}
A(s) U(s) & =D_{h c} \operatorname{Diag}\left(s^{\ell_{1}}, \ldots, s^{\ell_{m}}\right)+D_{l c}(s) \\
& =[\underbrace{D_{h c}+D_{l c}(s) \operatorname{Diag}\left(s^{-\ell_{1}}, \ldots, s^{-\ell_{m}}\right)}_{B(s) \in \mathbb{F}_{p r}(s)^{m \times m}}] \operatorname{Diag}\left(s^{\ell_{1}}, \ldots, s^{\ell_{m}}\right)
\end{aligned}
$$

$$
\lim _{s \rightarrow \infty} B(s)=D_{h c} \quad \text { invertible }
$$

Wiener-Hopf Factorization and Indices

$A_{1}(s), A_{2}(s) \in \mathbb{F}[s]^{m \times n}$ Wiener-Hopf equivalent (at ∞ on the left):

Biproper: $\lim _{s \rightarrow \infty} B(s)$ invertible

$$
A_{2}(s)=B(s) A_{1}(s) U(s)
$$

$$
\begin{aligned}
A(s) U(s)= & D_{h c} \operatorname{Diag}\left(s^{\ell_{1}}, \ldots, s^{\ell_{m}}\right)+D_{l c}(s) \\
= & {[\underbrace{D_{h c}+D_{l c}(s) \operatorname{Diag}\left(s^{-\ell_{1}}, \ldots, s^{-\ell_{m}}\right)}_{B(s) \in \mathbb{F}_{p r}(s)^{m \times m}}] \operatorname{Diag}\left(s^{\ell_{1}}, \ldots, s^{\ell_{m}}\right) } \\
& \lim _{s \rightarrow \infty} B(s)=D_{h c} \text { invertible }
\end{aligned}
$$

$$
A(s)^{W \sim H} \operatorname{Diag}\left(s^{k_{1}}, s^{k_{2}}, \ldots, s^{k_{m}}\right)
$$

$k_{1} \geq k_{2} \geq \cdots \geq k_{m}=$ Wiener-Hopf factorization indices of $A(s)$

Brunovsky-Kronecker canonical form

$\operatorname{Diag}\left(s^{k_{1}}, s^{k_{2}}, \ldots, s^{k_{m}}\right)$ is a PMR of $\left(A_{c}, B_{c}\right)$

$$
\begin{gathered}
A_{c}=\operatorname{Diag}\left\{\begin{array}{ccccc}
\left.\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \in \mathbb{F}^{k_{i} \times k_{i}}\right\}, B_{c}=\operatorname{Diag}\left\{\left[\begin{array}{l}
\\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \in \mathbb{F}^{k_{i} \times 1}\right\}, 1 \leq i \leq m \\
s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \stackrel{s e}{\sim} \operatorname{Diag}\left\{\left[\begin{array}{cccccc}
s & 1 & 0 & \cdots & 0 & 0 \\
0 & s & 1 & \cdots & 0 & 0 \\
0 & 0 & s & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & s & 1
\end{array}\right] \in \mathbb{F}^{k_{i} \times\left(k_{i}+1\right)}: 1 \leq i \leq m\right.
\end{array}\right\} \begin{array}{l}
\text { Kronecker canonical form }
\end{array}
\end{gathered}
$$

Brunovsky-Kronecker canonical form

$\operatorname{Diag}\left(s^{k_{1}}, s^{k_{2}}, \ldots, s^{k_{m}}\right)$ is a PMR of $\left(A_{c}, B_{c}\right)$

$$
\left.\left.\left.\begin{array}{l}
A_{c}=\operatorname{Diag}\left\{\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \in \mathbb{F}^{k_{i} \times k_{i}}\right\}, B_{c}=\operatorname{Diag}\left\{\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \in \mathbb{F}^{k_{i} \times 1}\right\}, 1 \leq i \leq m
\end{array}\right\} \begin{array}{ll}
s \\
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \stackrel{s e}{\sim} \operatorname{Diag}\left\{\begin{array}{cccccc}
s & 1 & 0 & \cdots & 0 & 0 \\
0 & s & 1 & \cdots & 0 & 0 \\
0 & 0 & s & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & s & 1
\end{array}\right] \in \mathbb{F}^{k_{i} \times\left(k_{i}+1\right)}: 1 \leq i \leq m\right\}
$$

$\left(A_{c}, B_{c}\right)=$ system in Brunovsky form

Feedback equivalence

(A, B) has controllability indices $k_{1} \geq k_{2} \geq \cdots \geq k_{m}$

$$
\begin{gathered}
s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A & B
\end{array}\right] \stackrel{\stackrel{\Uparrow}{\mathbb{y}}}{\stackrel{s}{s}} s\left(\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \\
P\left(s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A & B
\end{array}\right]\right) \xrightarrow[T]{T}=s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \\
P\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{cc}
P^{-1} & 0 \\
R & Q
\end{array}\right]=\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \\
\left(A_{c}, B_{c}\right)=\left(\begin{array}{ll}
\left.P A P^{-1}+P B F, P B Q\right)
\end{array}\right.
\end{gathered}
$$

Feedback equivalence

(A, B) has controllability indices $k_{1} \geq k_{2} \geq \cdots \geq k_{m}$

$$
\begin{aligned}
& \text { I } \\
& s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A & B
\end{array}\right] \stackrel{s e}{\sim} s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \\
& \text { 介 } \\
& P\left(s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A & B
\end{array}\right]\right) T=s\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right]-\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \\
& \text { 介 } \\
& \begin{array}{l}
P\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{cc}
P^{-1} & 0 \\
R & Q
\end{array}\right]=\left[\begin{array}{ll}
A_{c} & B_{c}
\end{array}\right] \\
\left(A_{c}, B_{c}\right)=\left(P A P^{-1}+P B F, P B Q\right)
\end{array}
\end{aligned}
$$

Any controllable system is feedback equivalent to a system in Brunovsky form

Summarizing

$D(s)$ is a Polynomial Matrix Representation of a controllable (A, B)

$$
\begin{gathered}
U(s)\left[\begin{array}{ll}
s I_{n}-A & B
\end{array}\right]\left[\begin{array}{cc}
V(s) & Y(s) \\
0 & I_{m}
\end{array}\right]=\left[\begin{array}{cc|c}
I_{n-m} & 0 & 0 \\
0 & D(s) & I_{m}
\end{array}\right] \\
\left(s I_{n}-A\right)^{-1} B=N(s) D(s)^{-1}, \quad N(s), D(s) \text { right coprime } \\
\mathbb{\sharp} \\
A^{\ell} B D_{\ell}+A^{\ell-1} B D_{\ell-1}+\cdots+A B D_{1}+B D_{0}=0 \\
\left(D(s)=D_{\ell} s^{\ell}+D_{\ell-1} s^{\ell-1}+\cdots+D_{0}\right)
\end{gathered}
$$

Summarizing

$D(s)$ is a Polynomial Matrix Representation of a controllable (A, B)

\[

\]

Matrix Polynomials with non-singular Leading Coefficient non-singular

$$
D(s)=D_{\ell} s^{\ell}+D_{\ell-1} s^{\ell-1}+\cdots+D_{1} s+D_{0}
$$

$$
B(s)=D_{\ell}+D_{\ell-1} s^{-1}+\cdots+D_{1} s^{-\ell+1}+D_{0} s^{-\ell} \operatorname{biproper}\left(\lim _{s \rightarrow \infty} B(s)=D_{\ell}\right)
$$

$$
B(s)^{-1} D(s)=s^{\ell} I_{m} \Rightarrow(\overbrace{\ell, \ell, \ldots, \ell}^{m})=\text { Wiener-Hopf indices of } D(s)
$$

Matrix Polynomials with non-singular Leading Coefficient non-singular

$$
D(s)=D_{\ell} s^{\ell}+D_{\ell-1} s^{\ell-1}+\cdots+D_{1} s+D_{0}
$$

$B(s)=D_{\ell}+D_{\ell-1} s^{-1}+\cdots+D_{1} s^{-\ell+1}+D_{0} s^{-\ell}$ biproper $\left(\lim _{s \rightarrow \infty} B(s)=D_{\ell}\right)$

$$
B(s)^{-1} D(s)=s^{\ell} I_{m} \Rightarrow(\overbrace{\ell, \ell, \ldots, \ell}^{m})=\text { Wiener-Hopf indices of } D(s)
$$

$D(s)$ Polynomial Matrix Representation of (A, B)
$\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{\ell m-1} B\end{array}\right]=\ell m \quad$ and

$$
A^{\ell} B D_{\ell}+A^{\ell-1} B D_{\ell-1}+\cdots+A B D_{1}+B D_{0}=0
$$

Since $(\overbrace{\ell, \ell, \ldots, \ell}^{m})=$ Controllability indices of (A, B)
$\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{\ell m-1} B\end{array}\right]=\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{\ell-1} B\end{array}\right]$

$$
(A, B)=\text { Standard Pair of } D(s)
$$

References

H. H. Rosenbrock,

State-space and Multivariable Theory,
Thomas Nelson and Sons, London, 1970.
© T. Kailath,
Linear Systems,
Prentice Hall, New Jersey, 1980.
© P. A. Fuhrmann,
A Polynomial Approach to Linear Algebra,
Springer, New York, 1996
© J. W. Polderman, J. C. Willems, Introduction to Mathematical System Theory. A behavioral Approach
Springer, New York, 1998.
目 P. Fuhrmann, J. C. Willems,
Factorization indices at infinity for rational matrix functions, Integral Equations Operator Theory, 2/3, (1979), pp. 287-301.

References

I. Gohberg, M. A. Kaashoek, F. van Schagen,

Partially Specified Matrices and Operators: Classification,
Completion, Applications,
Bikhäuser, Basel, 1995.
K. Clancey, I. Gohberg,

Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser , Basel, 1981.
I. Gohberg, P. Lancaster, L. Rodman,

Matrix Polynomials,
Academic Press, New York, 1982 and SIAM, Philadelphia, 2009.
目 I. Zaballa,
Controllability and Hermite indices of matrix pairs, Int. J. Control, 68 (1), (1997), pp. 61-86.

