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Vandermonde matrices

Let us consider the monomial basis {x i}i=0,...,n of the space
Πn(x) of the polynomials of degree less than or equal to n.

A =


1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xl+1 x2
l+1 · · · xn

l+1


is the (l + 1)× (n + 1) Vandermonde matrix corresponding to
the nodes {xi}1≤i≤l+1.
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Vandermonde matrices and total positivity

Proposition

If 0 < x1 < x2 < . . . < xn+1, then the Vandermonde matrix A is
strictly totally positive.

Definition

A matrix is called totally positive (strictly totally positive) if all
its minors are nonnegative (positive).
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Bernstein basis

Bernstein-Vandermonde matrices are a generalization of
Vandermonde matrices arising when considering the Bernstein
basis (instead of power basis).

Definition

The Bernstein basis of the space Πn(x) of the polynomials of
degree less than or equal to n on [0, 1] is:

Bn =
{

b
(n)
i (x) =

(
n

i

)
(1− x)n−ix i , i = 0, . . . , n

}
.

Example (case n=3)

B3 =
{(3

0

)
(1− x)3,

(
3

1

)
(1− x)2x ,

(
3

2

)
(1− x)x2,

(
3

3

)
x3
}
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Bernstein-Vandermonde matrices

Definition

The Bernstein-Vandermonde matrix for the Bernstein basis Bn
and the nodes {xi}1≤i≤l+1 is:

A =



(n
0

)
(1− x1)n

(n
1

)
x1(1− x1)n−1 · · ·

(n
n

)
xn
1(n

0

)
(1− x2)n

(n
1

)
x2(1− x2)n−1 · · ·

(n
n

)
xn
2

...
...

. . .
...(n

0

)
(1− xl+1)n

(n
1

)
xl+1(1− xl+1)n−1 · · ·

(n
n

)
xn
l+1
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A Bernstein-Vandermonde matrix 5× 4

A =



(3
0

)
(1− x1)3

(3
1

)
(1− x1)2x1

(3
2

)
(1− x1)x2

1

(3
3

)
x3
1(3

0

)
(1− x2)3

(3
1

)
(1− x2)2x2

(3
2

)
(1− x2)x2

2

(3
3

)
x3
2(3

0

)
(1− x3)3

(3
1

)
(1− x3)2x3

(3
2

)
(1− x3)x2

3

(3
3

)
x3
3(3

0

)
(1− x4)3

(3
1

)
(1− x4)2x4

(3
2

)
(1− x4)x2

4

(3
3

)
x3
4(3

0

)
(1− x5)3

(3
1

)
(1− x5)2x5

(3
2

)
(1− x5)x2

5

(3
3

)
x3
5
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Vandermonde matrices and total positivity

Proposition

The Bernstein-Vandermonde matrix is strictly totally positive
when the nodes satisfy 0 < x1 < x2 < . . . < xl+1 < 1
[Carnicer-Peña,93].
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Importance I

The Bernstein basis for Πn(x) is a widely used basis in
CAGD [Carnicer-Peña, 93; Delgado-Peña, 09; Delgado-Peña,
12; Farin, 02; Farouki, 12].

The explicit conversion between the Bernstein and the
power basis is exponentially ill-conditioned as the
polynomial degree increases [Farouki, 12].

It is very important that when designing algorithms for
performing numerical computations with polynomials in
Bernstein form, all the intermediate operations are
developed using the Bernstein basis only [Bini-Gemignani,
04].
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Importance II

Consequence

The accurate and efficient solution of the main problems in
Numerical Linear Algebra (linear system solving, eigenvalue
computation, singular value computation and the least squares
problem) for Bernstein-Vandermonde matrices is an essential
issue.

Linear system solving and eigenvalue computation → In this
talk

The least squares problem and singular value computation →
José-Javier Mart́ınez
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Ill conditioning

Observation

Bernstein-Vandermonde matrices are ill conditioned
[Marco-Mart́ınez, 07].

Standard algorithms for solving the problems of linear system
solving, eigenvalue computation, singular value computation and
the least squares problem, that do not take into account the
structure of the Bernstein-Vandermonde matrices give no
accurate results.
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Bidiagonal factorization

THE CLUE

The fast and accurate computation of the bidiagonal
factorization of a Bernstein-Vandermonde matrix A, allows us to
solve in an accurate and efficient way the main problems in
Numerical Linear Algebra for A.

THE KEY THEORETICAL TOOL

Neville elimination [Gasca-Peña, 92; 94].
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Bidiagonal factorization

Observation

Factorizations in terms of bidiagonal matrices are useful when
working with Vandermonde [Björck-Pereyra, 70; Higham, 02],
Cauchy [Boros-Kailath-Olshevsky, 99], Cauchy-Vandermonde
[Mart́ınez-Peña, 98; 03] or generalized Vandermonde matrices
[Demmel-Koev, 05].
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Neville elimination

Neville elimination is a type of elimination that makes zeros in a
matrix adding to a given row an appropriate multiple of the
previous one:

Given A = (ai ,j) ∈ Rn×n, it consists of n − 1 steps

A := A1 → A2 → . . .→ An

where At = (a
(t)
i ,j ) ∈ Rn×n has zeros below its main diagonal

in the t − 1 first columns.

Observation

From now on A is a square matrix.
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Neville elimination

pi ,j := a
(j)
i ,j pivot (i , j) (1 ≤ j ≤ n; j ≤ i ≤ n)

If all the pivots are non zero:

No row exchanges are needed.
pi,1 = ai,1 ∀i

pi,j =
det A[i − j + 1, . . . , i |1, . . . , j ]

det A[i − j + 1, . . . , i − 1|1, . . . , j − 1]
1 < j ≤ i ≤ n

[Gasca-Peña, 92].

mi ,j =
pi,j

pi−1,j
multiplier (1 ≤ j ≤ n; j < i ≤ n)
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Neville elimination

U := An is upper triangular with the diagonal pivots pi ,i in
its main diagonal.

The complete Neville elimination of a A consists of
performing the Neville elimination of A for obtaining U and
then continue with the Neville elimination of UT .

When no row exchanges are needed in the Neville elimination
of A and UT the multipliers of the complete Neville
elimination of A are:

The multipliers of the Neville elimination of A if i ≥ j
The multipliers of the Neville elimination of AT if j ≥ i .
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Total positivity

The Neville elimination characterizes the strictly totally positive
matrices [Gasca-Peña, 92]:

THEOREM 1

A matrix is strictly totally positive if and only if its complete
Neville elimination can be performed without row and column
exchanges, the multipliers of the Neville elimination of A and AT

are positive, and the diagonal pivots of the Neville elimination of A
are positive.
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Bernstein-Vandermonde matrices

From now on, A is the Bernstein-Vandermonde matrix for the
Bernstein basis Bn and the nodes {xi}1≤i≤n+1

A =


(n
0

)
(1− x1)n

(n
1

)
x1(1− x1)n−1 · · ·

(n
n

)
xn
1(n

0

)
(1− x2)n

(n
1

)
x2(1− x2)n−1 · · ·

(n
n

)
xn
2

...
...

. . .
...(n

0

)
(1− xn+1)n

(n
1

)
xn+1(1− xn+1)n−1 · · ·

(n
n

)
xn
n+1


where the nodes satisfy 0 < x1 < x2 < . . . < xn+1 < 1.

⇓

A is strictly totally positive.
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Determinant

Proposition [Marco-Mart́ınez, 07]

Let A be the square Bernstein-Vandermonde matrix of order n + 1
for the Bernstein basis Bn and the nodes x1, x2, . . . , xn+1.

det A =

(
n

0

)(
n

1

)
· · ·
(

n

n

) ∏
1≤i<j≤n+1

(xj − xi ).
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Determinant

Corollary 1

det


(1− x1)n x1(1− x1)n−1 · · · xn

1

(1− x2)n x2(1− x2)n−1 · · · xn
2

...
...

. . .
...

(1− xn+1)n xn+1(1− xn+1)n−1 · · · xn
n+1

 =
∏

1≤i<j≤n+1

(xj − xi )
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Bidiagonal factorization of A−1

THEOREM 2 [Marco-Mart́ınez, 07]

Let A ∈ R(n+1)×(n+1) be a Bernstein-Vandermonde matrix for Bn
whose nodes satisfy 0 < x1 < x2 < . . . < xn < xn+1 < 1. Then

A−1 = G1G2 · · ·GnD−1FnFn−1 · · ·F1

where Gi are upper triangular bidiagonal matrices, Fi are lower
triangular bidiagonal matrices (i = 1, . . . , n), and D is a diagonal
matrix.
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Bidiagonal factorization of A−1

Fi =



1
0 1

. . .
. . .

0 1
−mi+1,i 1

−mi+2,i 1
. . .

. . .

−mn+1,i 1


,

mi ,j are the multipliers of the Neville elimination of A.
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Bidiagonal factorization of A−1

GT
i =



1
0 1

. . .
. . .

0 1
−m̃i+1,i 1

−m̃i+2,i 1
. . .

. . .

−m̃n+1,i 1


,

m̃i ,j are the multipliers of the Neville elimination of AT .
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Bidiagonal factorization of A−1

D =


p11

p22

. . .

pn+1,n+1


pi ,i are the diagonal pivots of the Neville elimination of A.
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Bidiagonal factorization of A−1

mi ,j =
(1−xi )

n−j+1(1−xi−j)
∏j−1

k=1(xi−xi−k)

(1−xi−1)n−j+2
∏j

k=2(xi−1−xi−k)
,

where j = 1, . . . , n; i = j + 1, . . . , n + 1.

m̃i ,j =
(n−i+2)xj

(i−1)(1−xj)
, j = 1, . . . , n; i = j + 1, . . . , n + 1.

pi ,i =
( n
i−1)(1−xi )

n−i+1
∏

k<i (xi−xk)∏i−1
k=1(1−xk)

, i = 1, . . . , n + 1
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Bidiagonal factorization of A−1

SKETCH OF THE PROOF of THEOREM 2

A STP

⇓ THEOREM 1

complete Neville elimination without row and column exchanges

⇓ [Gasca-Peña,92; 94]

A−1 = G1G2 · · ·GnD−1FnFn−1 · · ·F1

where Fi , Gi and D are the matrices in the
statement of this theorem
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Bidiagonal factorization of A−1

SKETCH OF THE PROOF of THEOREM 2

Neville elimination without row exchanges

⇓

pi ,j =
det A[i − j + 1, . . . , i |1, . . . , j ]

det A[i − j + 1, . . . , i − 1|1, . . . , j − 1]
, 1 < j ≤ i ≤ n.

OBS: mi ,j =
pi,j

pi−1,j
, 1 ≤ j ≤ n; j < i ≤ n.
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Bidiagonal factorization of A−1

SKETCH OF THE PROOF of THEOREM 2

Properties of the determinants + Corollary 1

⇓

det A[i , . . . , i + j − 1|1, . . . , j ] =

(
n

0

)(
n

1

)
· · ·
(

n

j − 1

)
(1− xi )

n−j+1(1− xi+1)n−j+1 · · · (1− xi+j−1)n−j+1
∏

i≤k<l≤i+j−1

(xl − xk),
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Bidiagonal factorization of A−1

SKETCH OF THE PROOF of THEOREM 2

Simplifying:

mi ,j =
(1− xi )

n−j+1(1− xi−j)
∏j−1

k=1(xi − xi−k)

(1− xi−1)n−j+2
∏j

k=2(xi−1 − xi−k)
,

where j = 1, . . . , n; i = j + 1, . . . , n + 1.

OBS: Analogously we prove the expressions for pi ,i and m̃i ,j in the
statement of Theorem 2.
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Bidiagonal factorization of A

THEOREM 3 [Marco-Mart́ınez, 13]

Let A ∈ R(n+1)×(n+1) be a Bernstein-Vandermonde matrix for Bn
whose nodes satisfy 0 < x1 < x2 < . . . < xn < xn+1 < 1. Then

A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn (3.1)

where Gi are order n + 1 upper triangular bidiagonal matrices
(i = 1, . . . , n), Fi are order n + 1 lower triangular bidiagonal
matrices (i = 1, . . . , n), and D is an order (n + 1) diagonal matrix.
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Bidiagonal factorization of A

Fi =



1
0 1

. . .
. . .

0 1
mi+1,1 1

mi+2,2 1
. . .

. . .

mn+1,n+1−i 1


,

mi ,j are the multipliers of the Neville elimination of A.
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Bidiagonal factorization of A

GT
i =



1
0 1

. . .
. . .

0 1
m̃i+1,1 1

m̃i+2,2 1
. . .

. . .

m̃n+1,n+1−i 1


,

m̃i ,j are the multipliers of the Neville elimination of AT .
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Bidiagonal factorization of A

D = diag{p1,1, p2,2, . . . , pn+1,n+1} ∈ R(n+1)×(n+1).

pi ,i are the diagonal pivots of the Neville elimination of A.
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Remarks

Remark 1

The formulae we obtain for mi ,j , m̃i ,j and pi ,i in THEOREM 2 and
THEOREM 3 are the same. That is, the Neville elimination of A
gives the bidiagonal decomposition of A and A−1.

Remark 2

In the square case, the bidiagonal matrices Fi and Gi (i = 1, . . . , n)
that appear in the bidiagonal factorization of A−1 are not the same
as the ones that appear in the bidiagonal factorization of A, nor
their inverses. Obtaining the bidiagonal factorization of A from the
bidiagonal factorization of A−1 (or vice versa) is not
straightforward [Gasca-Peña, 96].
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Algorithm TNBDBV: pseudocode

Computation of the mi ,j :

for i = 2 : n + 1
M = (1−xi )n

(1−xi−1)n+1

mi ,1 = (1− xi−1) ·M
for j = 1 : i − 2

M =
(1−xi−1)(xi−xi−j )

(1−xi )(xi−1−xi−j−1)
·M

mi ,j+1 = (1− xi−j−1) ·M
end

end

Computation of the m̃i ,j :

for j = 1 : n
cj =

xj
1−xj

for i = j + 1 : n + 1
m̃i ,j = n−i+2

i−1 · cj
end

end
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Algorithm TNBDBV: pseudocode

Computation of the pi ,i of D:

q = 1
p1,1 = (1− x1)n

for i = 1 : n
q = (n−i+1)

i(1−xi ) · q
aux = 1
for k = 1 : i

aux = (xi+1 − xk) · aux
end

pi+1,i+1 = q · (1− xi+1)n−i · aux
end
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Algorithm TNBDBV: comments

Our algorithm TNBDBV for computing the bidiagonal
decomposition of A by using the formulae we have presented
in this section for mi ,j , m̃i ,j and pi ,i has been presented in
[Marco-Mart́ınez, 07].

The Bernstein-Vandermonde matrix A is not constructed.

Its implementation in Matlab can be obtained from the
package TNTool of P. Koev
(http://www-math.sjsu.edu/∼koev).

The output of TNBDBV is a (n + 1)× (n + 1) matrix, BD(A),
containing mi ,j , m̃i ,j and pi ,i .

Computational cost: O(n2) ops.

It has high relative accuracy (avoids substractive cancellation).
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Error analysis of TNBDBV

THEOREM 4 [Marco-Mart́ınez, 13] square case

Let:

A be a strictly totally positive Bernstein–Vandermonde matrix
for the Bernstein basis Bn and the nodes {xi}1≤i≤n+1.

BD(A) = (bi ,j)1≤i≤n+1 be the matrix representing the exact
bidiagonal decomposition of A.

(b̂i ,j)1≤i≤n+1 be the matrix representing the computed
bidiagonal decomposition of A by means of the algorithm
TNBDBV in floating point arithmetic with machine precision ε.

Then

|b̂i ,j − bi ,j | ≤
(4n2 + 2n)ε

1− (4n2 + 2n)ε
bi ,j , i , j = 1, . . . , n + 1.
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Error analysis of TNBDBV: comments

We use the standard model of floating point arithmetic
[Higham, 02]:

Let x , y be floating point numbers and ε be the machine
precision,

fl(x�y) = (x�y)(1+δ)±1, where |δ| ≤ ε, � ∈ {+,−,×, /}.

The errors are accumulated in the style of Higham (Chapter 3
of [Higham, 02]).

The expression in THEOREM 4 is the error bound for
computing the mi ,j . The error bounds for computing the m̃i ,j

and the pi ,i are lower.
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Bidiagonal factorization: perturbation theory

AIM: Let A be a BV matrix. To prove:

Small relative perturbations in the nodes of A
⇓

Small relative perturbations in its bidiagonal factorization BD(A)
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Bidiagonal factorization: perturbation theory

Definitions

Let A be a strictly totally positive BV matrix for the Bernstein
basis Bn and the nodes xi , and let x ′i = xi (1 + δi ) be the perturbed
nodes for 1 ≤ i ≤ n + 1, where |δi | << 1.

rel gapx ≡ mini 6=j
|xi−xj |
|xi |+|xj |

rel gap1 ≡ mini
|1−xi |
|xi |

θ ≡ maxi
|xi−x ′i |
|xi | = maxi |δi | (greatest relative perturbation)

α ≡ min{rel gapx , rel gap1}
κBV ≡ 1

α

where θ << rel gapx , rel gap1.
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Bidiagonal factorization: perturbation theory

THEOREM 5: [Marco-Mart́ınez, 13]

Let:

A be a strictly totally positive BV matrix for the Bernstein
basis Bn and the nodes xi .

A′ be a strictly totally positive BV matrix for the Bernstein
basis Bn and the perturbed nodes x ′i = xi (1 + δi ).

BD(A) the bidiagonal decomposition of A.

BD(A′) the bidiagonal decomposition of A′.

Then:

|(BD(A′))i ,j − (BD(A))i ,j | ≤
(2n + 2)κBV θ

1− (2n + 2)κBV θ
(BD(A))i ,j .
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Bidiagonal factorization: perturbation theory

Comments

The perturbations are accumulated in the style of Higham
[Higham, 02]

(2n + 2)κBV is an appropriate structured condition number of
A with respect to the relative perturbations in the data xi .

Relevant quantities for the determination of an structured
condition number are the relative separations between the
nodes (in our case also the relative distances to 1).
Analogous results in [Koev, 05; Demmel-Koev, 06].
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Algorithm. O(n2).

AIM: To solve Ax = b where A ∈ R(n+1)×(n+1) is a
Bernstein-Vandermonde matrix.

INPUT: The nodes xi (i = 1, . . . , n + 1) and the vector b.
OUTPUT: The solution vector x .

Step 1: Computation of the bidiagonal decomposition of A−1 by
using TNBDBV.
Step 2: Computation of

x = A−1b = G1G2 · · ·GnD−1FnFn−1 · · ·F1b

by using TNSolve (package TNTool of P. Koev).
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Numerical experiments

We consider:

The Bernstein basis B15.

The Bernstein-Vandermonde matrix A ∈ R16×16 generated by
1
18 <

1
16 <

1
14 <

1
12 <

1
10 <

1
8 <

1
6 <

1
4 <

11
20 <

19
34 <

17
30 <

15
26 <

11
18 <

9
14 <

7
10 <

5
6 .

b1 = (2, 1, 2, 3,−1, 0, 1,−2, 4, 1, 1,−3, 0,−1,−1, 2)T

b2 = (1,−2, 1,−1, 3,−1, 2,−1, 4,−1, 2,−1, 1,−3, 1,−4)T

We compute the relative error of a solution x by means of:

err =
‖x − xe‖2
‖xe‖2

.

xe is the exact solution computed in Maple.

Ana Marco Bernstein-Vandermonde matrices and Applications I



Bernstein-Vandermonde matrices
Neville elimination and total positivity

Bidiagonal factorization
Linear system solving

Eigenvalue computation
Conclusions and references

Numerical experiments

We solve the two linear systems by means of:

TNBDBV: our algorithm.

TNBD: classical Neville elimination.

A\b Matlab command: Gaussian elimination.

bi TNBDBV TNBD A\b
b1 1.0e-15 5.9e-11 6.5e-12

b2 4.9e-16 5.9e-11 6.4e-12

Table: Relative errors

The condition number of A is: κ2(A) = 3.4e + 09.
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Applications: Implicitization of curves

The solution of linear systems whose coefficients matrices are
Bernstein-Vandermonde matrices is required in the solution of the
problem:

Given a plane curve by means of its parametric equations in
Bernstein form (the usual situation in the case of Bézier curves),
computing by using resultants and interpolation, and avoiding
basis conversion between Bernstein and monomial basis, its
implicit equation in the bivariate tensor-product Bernstein basis.

More information: A. Marco, J. J. Mart́ınez, Bernstein-Bezoutian
matrices and curve implicitization, Theoretical Computer Science
377(2007) 65–72.
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Algorithm. O(n3).

AIM: To compute the eigenvalues of a Bernstein-Vandermonde
matrix A ∈ R(n+1)×(n+1).

INPUT: The nodes xi (i = 1, . . . , n + 1).
OUTPUT: A vector x containing the eigenvalues of A.

Step 1: Computation of the bidiagonal decomposition of A by
using TNBDBV.
Step 2: Given the result of Step 1, computation of the eigenvalues
of A by using TNEigenvalues ([Koev, 05]; package TNTool).
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Numerical experiments

We consider:

The Bernstein basis B20.

The Bernstein-Vandermonde matrix A ∈ R21×21 generated by
1
12 <

1
11 <

1
10 <

1
9 <

1
8 <

1
7 <

1
6 <

1
5 <

1
4 <

1
3 <

1
2 <

7
12 <

13
22 <

3
5 <

11
18 <

5
8 <

9
14 <

2
3 <

7
10 <

3
4 <

5
6 .

The condition number of A is: κ2(A) = 1.9e + 12.

We compute the relative error of each computed eigenvalue by
using the exact eigenvalues calculated in Maple.

Ana Marco Bernstein-Vandermonde matrices and Applications I



Bernstein-Vandermonde matrices
Neville elimination and total positivity

Bidiagonal factorization
Linear system solving

Eigenvalue computation
Conclusions and references

Numerical experiments

We present the two greatest relative errors obtained when
computing the eigenvalues of A by means of:

Our algorithm:

2.8e − 15 (18th eigenvalue).
2.1e − 15 (20th eigenvalue).

eig from Matlab:

1.0e − 05 (21st eigenvalue).
6.4e − 08 (20th eigenvalue).

OBS: We consider the eigenvalues sorted from the largest to the
smallest one.
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Conclusions

Although the problems of linear system solving and eigenvalue
computation for a totally positive Bernstein-Vandermonde matrix
can be solved by using standard methods, the algorithms that
exploit the structure of the matrix give much more accurate results
when the condition number of this matrix is high.
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